common.title

Docs
Quantum Circuit
TYTAN CLOUD

QUANTUM GAMING


Desktop RAG

Overview
Terms of service

Privacy policy

Contact
Research

Sign in
Sign up
common.title

Quantum Logic Gates

Kinga

2020/12/04 10:25

Basic Logic gates(non quantum gates)

Single Input Gates

  • NOT Gate

![](data://image/png;base64,iVBORw0KGgoAAAANSUhEUgAAAZQAAAB9CAMAAACyJ2VsAAAAsVBMVEX///8AAAD09PTx8fHY2NjNzc1bW1tjY2OMjIyEhITt7e3k5OSZmZnU1NQaGhq/v78uLi5WVlZPT095eXmwsLAoKCijo6NGRkbf39/5+fnBwcEgICC3t7eurq7IyMhpaWk4ODg/Pz+VlZUMDAw0NDRxcXGIiIgVFRV8fHxKSkoTAAAZAAAJAAB4aGg/Ly9bSUlkVlaGeXmZkJA4ICAwFhYmGhonDAw4Ly+mnp47IiIjAAAl1OHkAAALdElEQVR4nO2di7aiuBKGKRBQUBEU5CZeEMHdPd09p2fmzJn3f7CTQFC3ogk2ArPMv9ZeGyUi5oNUVVIJgpDLV9RMJJvqSCu2JEMNIJ7NJx564Tnq+kLKQOB6sRYA4BSbDmz1fGNgoTen6A/miJeXwCcZHZ7tmwhDCbx804FlDmWyAdjpmjZYAyho18RA8hNIV3gj1Do937fQAoI97PJNAkWyYD8pdjoxHMqCDgQcR0tagHkgzRaBgu6dRbl3DoFLNscw1bs4wXcUgqIvi1uFQLFhdto7SWFMNk9QnHXS9km+mxZgeSsAXN8FFA/OTZYgbGBJtk5QkKVp/SzfTAiK5AWQCSUUGcA/71ZPBE5QVA7l1cJQBB9SuYQSArjn3dktFH83vj0MV5PKoUgKZN4ZyoVBH91C4Xq5ciiYxIRA8QHk8+6EQ+lABRTBhCOBogFcNE/LkyvGobQnAgWZ98mqcIkB8SmlBTAnmxxKeyJQvDmoJE454KaMaHduyziU9kSgCHIw3RZQdBtM0qESzWBNupDPUPQB7yd+sUoo2KSTDkkHwMq9YsOG+OQen6Bk9r7903wvnaBIJyjCKgWYmkf0xuYcsvCIvj0twCQNFApJLGI15CzGIyez8YUVcWBWvJpD2vI5vp08TTptnTYFT9Kjyfnlp4Li5/e5uLi4uLi4uLi4uLi4uLi4uLi4uLj+lYK+6vjGieRd1/1dKW8NZTVoSAtI/YYO5Y7eHIpML8SmQYOZLmMOpRlNOJSGxKH0UBxKD8UGJXJW9DriUJoSExScDeZQSz0DJTwOvar3ORSqDBw3UFOKnoEyPmfEXr3PoVBkQQJAzR3mUJoSC5RBCi7iQit2F4oe+VGZ+eq6XrmB9xxAmbin987iUGhCNSSGENOK3YOSbVHrtz3kd4R0JInJ0t5Gb9gBpJvNZh9VfCWH8kiahay8NoMVpVw1FPTp2EyUGAJMRYtJM6gBoNfHPQSWaVo358ChUBRBMMCziNaUctVQDmCH6F9YTAjX0k9QBOdOq9geFLeHS/8wQJmDJWAPzJ48LlcJBVV+uebLbHILpXtDb4Dau+lPdChisY6Ud6SFKpVQjHIei7vBi730EQqAOakMljoTHcoK4vyUh7B5fOqVUIblPBZPwVD7CQUg8ekl2xMdignqBI9xGLSilVDmUE7DW8Own1Bm4RIgVuT+3C1UKNH0PBqoPixZCWUENtlSsXHpJRTUGpj410V9wUKFMoZ0W2gP9sOKqoTilDYFucbIp5amBIreKyiCZtjoblFv4qVuRIOibXCrk8vdPzb1lVBQ5Re/1IAYt9sBWR1pV0JRK/vU2oaCFOI1M4+9aMRoUPyLTq/szmVNVAlFVMDC1SuZxVxXK/evcc9NDmUBe/fmM0InUAQvb8SSHsQtNCjmySbkSxg+cumrg0c/heVKXh3JFyF3IQmNQzAroCAbs5yPshswXUBBV1A4w41YY8N+z4oCRbscSPFsGD0oe6fvK9rmTsKWOJ27fB64SmyKgD2figV1u4EikEZsKT9qEV4vGpQwvGjzo/CRJbzXIamHu2wYlrs8eZztfNEzQrI3MgzjBkBnUAQpxOs5rMN2vr1abz9Gfw0FXTb53Wt2aPI5lBsoSCsFj7V2FrdwKFVQBMm383CynXO4FoAvSo1IjGA6aOhY3q5jKHhHbvI7uVtQvKQ0pCPEVlPH2nQPRfAWSkdxy6uT559W91Bw3LLPuyrbOZOz0KUwbEhziLOmjmX2AgrejaP8tuOWi6Uif1UDmDZWkV0b+rO6iFu490WBguMWjMVs0eRzKFQoSLnJfz2WyClgcCgsUMq45bWDxl5CHsXBAkV0jcWkoax7SdddhoUOn4Li6W79q4INilCa/OiFJt/LyNgVA5SJil3ULS0XjwGK5+xUmyWB/zkocgBp7U8xQyFxy/qX45b7V2VG0rHoULQA4mSE6pLmgNChSEUI8iooDjo29dK5FjsU1GQY+9y21P2OS42tzWy7LlxeWc2KXxmZCao/awZ7FUXODFAU2OBPzu+MEZ5FhyJa83FIzR/LT/0JKNIMzBo1TFQHikAase3TjZiGHLmtaZPHO4Tl4xsXECAy9hSCDRIdCmoT8ltEp4zQM9kUdN+K5qugRACD+mFXTSiClPeJPRu3JBAsdGmQFNUelgtzh3h81xusIdNd16VDKZ/7iI5nPZGMdyPJehUUE9ZCcvkoMSbVhYIqz8Bxi0UcZPe3b9++szZoA2IEPAtM4RoKtilsht6blynYDhnAvauOoegx+imr8mcyqz4U4RS3oPqYfHz9Ch9f/2b73Ag3U8W34szsKyjM3pdmluPyqHV4XE8dQ0G3tCboM6gZS0TPQBGkaIY7TX3vx8eX3//z8+MPtkvBLK/wiY1vmaehbMu8L/fTs9Mq1C0UScmNZwLKza6FZd7X9ikoSIaSAvz51z+ocvWfH1VfYe2uP7MlPq/gbrGf+CwUvXx8LU6reyKX+EavgiLDVM7/3d7Pu8eDBE9CESRsWr78xN/67cuflcMP10Z42RCUU4akTvNsuoVyKLL8hABunnUYKup9HZ+FEloxwH//+ILMSfTXR+Wxb87ELGdeTYKi+doWjY9Ts/lalv7M5NNTBivUKRQRYKhjjWgzNq70nE3RjAAgXkfCb1+/fv/x5eMb29nuyszqIjM0SqdFduO6HhRJzafFCfkDBx93WnUKBZ3dnqShp7VM/VPeV57gmk+e0P8HyP36h/ErXdKdIW5y06fbhYc8CAqXeEjqmhqnDEEpPOED2D12iU2Y2gGWnT5M47xRfShiuM2RFK+kv398/53ZDR+iWF4TB0fiNK0hNiRxFdgFlBWkI8P36VAWEBSmxKL92C6hyAGscDDsuvoO7DqhSu2IPk/VezadQhoR56L4PLLYWKoDU/xSTPKXdCjavjAqfnyb8ftZbFBe083inB8cpsXUrtNL1YTyqxMmPH9tx5tdWVH60E43K3GQFV6ZJDvD0YhpziMcdB212RnlTBigLMbObg9rxxlTZuTWhILckfNtXK9Xsg4UKcTmXW0sq+GeGMZT8B2HvD+TVksMUGYnF/4mrvqsmlCiy8R9gxblflKN8ZRi/koLU1ZZRh4jZRovV02sYjSeEyWULryaUMIkO78QM9rRL8UMJU+fsFpJ++Zj9ExQSFzSUloeh8ICxclnD7c2OYJDoUIRFzgueb15P6unGZJOb6Boi1+JS54TwPowakSHBOJ5M4caHay+QFnk5r3ltVtoye+dqQ9QpAUy72n7qxyhy+BBv3YtmRA/6iOvo3Uf5qeIDo7e5x3M5gLwPbEReTJMB00dq/uZXF7ecHWz6BT3viqhaOG0xbjkWhxKFZS84WovLrkWh3IDRVxtWul2vC82KKLEkKfJBsWVZYZS3UHR8lBx3ulKeXQonj9OTIthNI8FijbfToMl/WCdQekkLrkWFYpYDI7dZlPdiAHKxIZAMVN6GmM3UKQVMu/puvPVVxmgzNZjsyEoFmxkdOvZMKcU7AJKd3HJtRjmp2iekDUDxSc9bStatlIHULy8j0vpxWK4TIbemzcDZQ3L8luHj0u2voYkjkvSpEOP61KtQjllbar5TIAHahlK3nCte7F+JFabUNxZOZI+hu3jY7UKBcclPTDvZ7UJRQ7IyqtCCPvHdd72Ct5ZD8z7WW1CiaYlFB9mj4u2C0UZ9KXhKsShQFIjIakdvX3z5fbq0QOF3t7Q91Fv7xL3UW8fPPZRbF33GeUpHbnYu1kWPepm6aPoUAa+byhwjHyfEl4xdUjuZa9fHZJ9FB1Kdsr6odRkja77bX+67vsoOpSxdXda+GcxDXIlm2mwzGjFOBRKCe+sxwXZhoN1WWaobg6lIf07Eyf6KA6lh2oQyoBDaUgAjtyQVpCGDR1qkr05lJ6KQ+mh3hjK/wGH69rbauSeswAAAABJRU5ErkJggg==)

#Not gate inverse the output. If the input is "1" then the output is "0" and vice versa.

  • FANOUT(copy gate) and ERASE gate.

![](data://image/png;base64,iVBORw0KGgoAAAANSUhEUgAAAb8AAABxCAMAAAByWF0wAAAAhFBMVEX///8AAAB6enri4uLv7+99fX1mZmby8vLMzMyZmZn39/f6+vrS0tLJycnX19e0tLRUVFQ4ODhtbW1MTEwzMzO7u7uKioqtra2ioqKTk5OFhYXq6upXV1fW1tbf3997e3umpqYRERE/Pz9FRUUbGxvBwcFycnIMDAwsLCwkJCQtLS0eHh6OUK9gAAAIdElEQVR4nO2d2YKiOhCGU4JgQEVlX7RRXNru93+/kw3E1nHGFkSO9V0gGIgVfrJLhRAEQRAEQRAEQRAEQRAEQRCkV4STri1AHsAB1K/PhADjrm1Afo0DAKOujUB+TRjmqF9/CQNCUb/eMoEQ9euMlXYHqysR2OEi1RLUrxt2cBdXYpiCkRlz1K8TdrBNhv/O/jIG28nZFsvPTmC5L38wCprx7WiO/b8OANb0eIiIgjchZBm6w9xsxibknwmvVmj3QKM83xEypnlOUb8nkwPsurYB+TURytcpgf7Y9bNOJg30uIMffUUoPFbh0DXYDZlyB+bGeP6PviQL8KwHLqfdTPlYsMYMyAkA4AH9OpLPPgAM2op8I7arpK34G8VYGo/oF8OyOVvuANLW9NuI3lAK0AcBPyYke0A/lv060Q+I1l7+80DIN2wr/gaJYfSIfp3JN29Tv4JlwH5kPzsJTXP2a/0c2HYy3GwB0cft6UdcPkXSA/lItHY3xfqGfvqtWbw0AueJxp6AbFPMb+l312TkJRaTL3tecn6NGfGe963yM/7LPF4n+q34vb3ZfrlvMvIqPdDPHFL+Ed3of/v7wZ8ZziDoYLB5JQbLzeyGfres/jvDXuhnOgksNEJGk0P4y2w0dSF5toAjf8snqywnKvxpS7+xZvpt2oq8KdIgpvGY/+uLxr+tq6cZJA+Ont6LE1DKzLWSmAYtjbvuAKIA3mImmXUgXv05vRtfzEYHLbZvX4dVBvtHRk9fEU+Mv2iweYdZMc2FRQfTD20yBp9tLVpc+5fj/450BkZzAjqvUOnIMQnrLeQjxHj4zy8ndod3KLNeC3MO86biCuGzm+mMd8Y+wmczMbGWH/5/twOOcGwknpDi/6+7YA3rJqLx8f2xjmhEwAlEqF9HfMPc0u/gWhz+wDYD1K8b7pyduRLDFNzN5oj6dUNm3MO1yRmfT2Zh+dlXwhnf7o6oXx9xQtiwnvtqlwU+vn/UP5KAxg4hoyCOnz2hiCAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgrwtumma/C099iFdg5jlOwmWrnZ5oHDcY5m6uKAK5sci2CS2iEZtnmh0dVTaL7H16kicatsW35OXlen5P8D9l849b74G4cqGv92nQvIvEKs92NtPAO4A3jIAdOLBWujDF7A9fjMBtx53gBrCYe7NAby5B5uWbdZAGc0+bOHfHOZsP0xPCvqQl7s88DCglJCEneixyz774bG14uS27IqfGkO6BBllR6FfCoe0DBpKAYkOEduaC9hw5Vz4Emf4nyCjs7m6zjd/Gyzj4heblDSCVsslej3OdCMsIrHB/WHaBfdfvcu24JQCWhEE6uIVD1x9Qc7PX4uHU8+KoBkLn8Luo9pNrvjMAU9+UuFZkj2i2zLkQzzf7D6K9/UozOQ9NJTDzFj5s9N5fgvFDZ3x862GHGqmQ205Kt8R3J2tdTUGqowXJ0r/c84naCp8ApW/WekvYzrPpX0qvA8OyxV+/Q3m9aX7T66fviQkkPoFpZ6EDBZHUagK/dJ9ufqDBa7IeEGpH8/AI/FkSP2uvnN7N1ox4j4Py0O6r71sNhL6jU1pdOnf/APKTDrxjHP9SCgEd3l01ois4v54zJJFjSK/fB2d6zVZsCdcuEOKycnF0mLlHPhtEPpFUK59ZA1hwT/P9JMI/YiVN2F3nGl1e8dereyQ+hnMYl6RKf2msyr/aRNfVecE1sLsscjIQj+dJXjaG+dd4bli6+jnCVy/cekAM2TH32XaFmPi8BpD6JdX+rHySiyK+kf9GmHqCjNO1sf7UxUo9Bt7qmLXxPoNNQ/B6Y4lW50ewTbMc1V0CP1itykbn8EPv+OHiwwIWxrvy/oALCZUoQ6Yfuz8vBv9qCHuf02/mr+DEWSUFlDpV9CYulWThSwzoi3Kle4i3lotpIAuxHHw+v6u68gaPkkS6S1ucqnf0fcDpV/ECx2YqRCuH2sJROkP/fRn6BfJZVohTqTrdbKa1fVb+H520i/zHd+o3APrvHYLK3OdHatGC5F8Fxwn7JV+gVjgZ5aNPjZSwEv9auWnux8Oh/CtyliuH7tVnnWuH+sHtq/feC7LjTWMdo60Z3jygS3KT61gv88tkeVnaqj2MVkdkuHQhVlZGxJrEsscKMpPh5WfY78hO9tmyy2esv6qU/bPf55Rtl84rnS5o9bbE/qx8lW0J0/tFxOeoF+oyn3+GxrkfHfwQz+SjWVyVPslKZsvqfIcJB5Ymdl82Z8Q+qUed43ekJ1tc+QW26m/+bqlnyWf3GTClyRZwlqWWFK/ldTTSsr+g6kEblU/p9SPcH3E83KhX2r90E8OHOiLlK8YM4C5VqXXoif9bPa135cVBYV+mheY9JZ+ikz2ipbyfpG9FGwl5YrhWz7fNrhCpUSNv1jfVQRt6Sf0udCP8LEEUtNP9v9MOX5nD8TzpdLrxNwyVx1Ny+tfHtEBXrEEhrBLuB6X+lXZJ1D9X1PeD6r0MVV5+sGHP0lNcEMeH05xZY35Vw7P9BPFe02/perUGmr9PtH8GnD9gC+ZVCZH5D/Rf5+AGh8SIZoc0O0Fov4z+A0ZDa7oV6vw+PBuyrMXJ5DrIQlBNTUgvefLd9bG15hcNQd11fpJzdhNZfuT9z9T2WGr2i+rM+94lvjkeizA2tpELYhDxdc6S28Vbpwu68/4tcx/AHkoKvTHbm/2U56iQY/m5yj9trzzJvb+wd/kNf/qIATuTXa74PM8ScdG3Oc+gRB+NPFpJ6vvds/ZmuFmW9mleeL87NAe9GbIslmKumTfxR/PezUcOFuzih7eM/uxar02f7vv0I57CcPa/G1K39ZbqH1qbAW9+t9HpJ32J29aeiIIgiAIgiAIgiAIgiB/4T9SSmcE5DjeCAAAAABJRU5ErkJggg==)

#Fanout gate copies the input to two or more output.

#Erase gate simply erase or reset the gate to 0.

Two-input Gates

  • AND gate

#If both the inputs are "1" then the output is "1", otherwise "0".

  • OR gate

![](data://image/png;base64,iVBORw0KGgoAAAANSUhEUgAAAOEAAADhCAMAAAAJbSJIAAAAh1BMVEX////+/v79/f0AAAClpaXt7e3S0tL6+vpYWFg9PT1mZmaCgoIYGBiUlJSsrKy4uLj09PRdXV3h4eHp6enZ2dktLS3W1tbGxsaLi4tMTEy+vr51dXXMzMyzs7OZmZlNTU19fX1ubm5FRUU4ODgkJCSfn59lZWUyMjJcXFwpKSkgICATExMWFhYq4le8AAAVBklEQVR4nO1di3qiTA8Ow2FEKo5AAQEVsFrb/vd/fX+SQesBtP12u7D78O5u16LgvCSTyWSSAWDEiBEjRowYMWLEvwlhGAaIy2MG/xEGvaQfgv9C85JeCHyXD/FbdA2BH+X/6Fz8gNBH+Er9gZpHPATIyzcMQ2ILsZ2SW28I/JiUeFBqspKJ0NvHE6SBv+BP2XCSUjAMfSd6At1pbG8QBOriuEqUkAhqsxDUVCKJf6XiG4JvBVZqFcjPzubzuR/i/ZB0PwzBLyQzU0rflGsN+ZPgG1zUebUIzg+rVGHLgJpNMhTcYJJb6IUsP8PfWnNrXwkjMtP1bL30Wc6klLKRG564KzTdHrWUZRi8xlKt04s3TredtVDrMf20a5IWgLON8bg6rCHYoJzxJtn0WXk8iTVVeH7Ta/ujSN0Lij22w3HPj6u9DcvZYrsJoZxV9SSGVQpCVcH0YxMR29yiDoxnSWciSbb4SRQW7Fy3nEbgbOo6lauXek0vJ1mPWkp9RwXYuNmeGq7vtQGhG4JZhna1hqkbKGsCfoVWZBk7LvZQbO/W0VbmOQjqILRDr0QBGiJ4xQ+bsax3Mtwkdj6zw7qQhRv1x5AEgTzt8s0hLZS2bVPPsV0bnpCEVcJ+jbq5DPwSP7Zx7A3eDuySzzHZYAlvUWDWy7p+T8j+QLkjRXYMW6nQzaD08QqGkum6R4LUR6Tv5iF1NIhr951Y29itXvDGWxXsMzDUIfZzlNkyJoZ0T+qEuqphb+1oQr+vp2iaABYZavjCAX+xz18Ska4g3eZVdbD6YyjJ+s0mBaknGkEZhiGbTFczRF4LHxu9sVGGUm5jexLwaJ/OSCthNYVgqZBaNFGkDtMV4LlR/IKjT5VAacG6tEM7Ch425KdAYzkUL0rZNrZTssaioRekpe/IcJfDdKPkvBarpSEyM7bdmMY3adeZEiqpQ4g2OJSqaKmwn0JWh6FlRs4rCMdMwPOxD9oi7rEfspLO6zLP85TVlEc+CfbEBhdvPFrQ6aHKD4URThdefojk9BU7LHoDTrUv86pA6e3J9ARoS2kUnO2rsnZkuvDKvDZ8cwbWoVz4PdpSMpwqZJz7j8JGTUXlUzbs52FkGySmQNnIPVLa6MogYkdI2uyshpL1AVAnUZElvqciQwboH4RR2Kdf+hiL+WkUuQ/05GDlBra1kY8/PCTMCnK9v/BBVG4h19OqjPp0Q/8DyAkVX2HIXqlBmvx3EdS++VfaTLZYsguhHn94SDDgixNYnn8I9nRHjBgxYsSIESNGjBgxYsSIET8Ng5elhV77pcm4EMff70PAzl9lSWSfXQlAr2b/XHO/jRnH4ikoJmgNmgKAtCwtIcoecBSQmObHx8f7szupdpGSekWf1kN7XBy8hedJHTbTC8+8rispuulPHwRjhIjNfbayUq+aPJum+Zz7Tggcp5JDCo96ngiSJM8jkCvHyx2AVWhAMLf39ep+gAxZlCavrwg7cLKZiyw33pzIySFpqeehspWRtQ2UuYnnbzHUhYBsoqo6u88QNTt4n8BpFVWIIN2gMKvEvnven4ZXQvIqafVPmiTACSwLgGwDq+oLZ69NR4d9qe+R4EK//DC3Vn9LZ7dIPSOZYtsmmfEWgAhcwQyXtIZNS060DExN3yxucFgsXDMFqRMrjp1WBtaL+ZwqbZm/Fjn+UZQpJBUS2STilTpgfZIhWhoFyUbnl8jD9Bp7/Fdtt4G4NZ1JZZozRSlGstfcIEaK/XCKN3ujtRQtqJsBWC7LUEC5Lnh06zKOiZlpUZ/AKxoCOR4SnQTVt10tPZXskcImA3OTrFBT00nhP29g/oyWJprFvhbF7Zmc8yXN3LhcaaOsIiQlkw/TIx3tMzeI4SQQZNjILJDbLPUCNJFWbuFwr2ZrG/x0lSvKGWm1/5SYUJlX+W+cBkWKa3smr/D3LUPOueOOJJ9D+LQM7Hip1AmRNDRZbJegQxJWZnjZDw3OUKSfcmW60XA8OEOoZQBXZiHwBcSru+cVpt9tLp23Jx5NruyN4JVTHFrms3VmA+fIUTKg0sl9OkOMVIO6wW9Scr7x8Y3hE/DQTkQv3p0BIXp7jjhlBTmdhE/pitSzIzdd+fmE0naIooQ00UmrWmWIou//LiXngU93rPN7RpmWxv2vCJeLbv9VQmw+c7aqvFRkkpW9mdNX7KYKDO0vTFfHS1GGJ31vOvtdDElYOnfworkC1CMhqsWmu6shtcScSh76P4HDLBmuec5fJp7jwkPrWzmrp9oP9t7k1ZKAPQb8dfH2vP5dMhR6VLvSUp1QevdMOV1en3X2JpKbmbcdmUef0uIMYlhkzh6/epmow8yOTF8Fyww+kOGulLln/x6GpPPU+42roV1nOt8/N6+h8yOCpPT08XyJt5qzxPKVwVKu5kWFMtwUUK2w49qcHMjZVyXOXrsv/g1yrY6V0Nk+j8+v6m5LQ6pvP9Wpl15gxoNSuqbOZuBcJpnif5sEKh/iiRJGUsFTxETxo79sS3X+9W3bxI3KtkPul9BJkZQ8R7/u5jh5PcmScwRD1y4q1lKyNDGlxK1QhqilM48tza+qKXUFddtCHrS/wtCeHLq9Vrx9qWlxdopxYWkUUlP52lYyXPhQ1KHI3lFLdyI2EyHrOTxlEGxySFP5y1rKN7pVS79mp4Nt3p17YsDOLFlX5eUgRJ0eQu+Q56iZQlYHL3UL/LAVvVb5BKde1rIs9zPIzNkvxwusXasaCAiKL03tCnPX/aaxMyvVVGWc+3vkAwid6WdTZE4FsbKlVFEYT8IowhbhW6HCUSUKf9mpKb2G4LldoZc4j2peGe15etqfzXDO1dJhubhE5SjBFgmT0uhqE9BjsC5FIaVxJpILc7RV18HNX2ToeTIsktRD52oerz1HwhwnwmHGcRq685QqKmTLwC+4gGJtSuPKS6Axggb5oDJT+S1rjzPw9LdPRbwUFS0v1nVomJO5j/PDGmeuyUZN3ZXSZTw8y287l7Kct+5VN6apE9+Q5AWd8u/ETulbfiAO6XkiecHLugmYBRrqBY5PANmEIlGGjhCLDhefJgi2ub4ypWwtUQtSc0nhAfl1x5KnXL9/vkzRxCnevA1HoozQFUuSIUeimii9uK1jO8E3k6ueosVtbc2ZTbOf73jO8kcCV8TwIAVHonCUPUaiJmxpcH5TWjSxkdLswMQ2bkrt7PmbuYhYBb4V/qZkzZ9hSC7FJBNmzNUU1A93HImCYI1DtuL7avnXsCzLz80ZV2fwpRqewa42l3Oul+G5yrcszQ/ErcpSJgtyfDMwl9H8xYF04czfljDfJirY4yz83l1NzQDOnXNhOPmz+fwgWv5nkVAkCps4D+Rrlucx3sXddB2vwE5nKvLCKO9qLd7uyMw5YqwpqijzTHNbFn+w+V8BWQZWf/lKK0fHgYFHcdRSKMOOE/GcyjyG7+3E8vbvpllldGRQq2viWABpKFdH1Wg009EgCBZpuep2OhMcSJP52tu77x/mx9vSC5RohvwBgUd0g8t7HdmMXzyrMY7S7Or7Ithqc/pST72ZX5A2s3fQLNIMB4aus25e68WUY7n13Zx123GcOI6jIGymX4Y+s+dK7REjRowYMWLEiBEjRowYMWLEiBEjRowYMWLEiL8U8qqaQF4n2WroPMpvwtA7frbnRv4ptC51/t6ldtFrWQ1+8876Kr7+yfMTYvm1bcN+CKhHXVkmvwvW51JsHxDI0DfOUkMp0yvkirwLwOyJy2vF94Cd3NxBr5VR2EFM/+IA/rEp7+YKs/99/+KcHIYM5dd2KPwZ4DczQ20MuPSCGDrNHsmUGMs7f5IM9X7kzU7dosn5E01WgOD0KBIaJTTq6/Bf0tJeN75mhqJJ32psAjEkcgohQaf/MkO9zzfIILB1ygNl4lEBNScAUnKcwZvwHSvaGoa/nkH6ywxJKlJ5fjNO2DpnNj7Uy3o50xUHmiGn5TiTSeVSerYuZpJRQEVBmpxOP7QLLgsbFEOUQ1S7TV5G0w+TGn+EG59TjhqG+DJ5LdAceRshmhTfWQqnrBUuiDecV95vekAMOQVovd44usewlkooapKkxWlfDUPaAfJAFTKGsVlBZgMETrjfF7II/FmC4g1AqMxev2S2LpcZCkNWvk1spZ9aSgVNNXWyxYqzqpgh2ZpwaXN+4c6DZy4KCTb1XC23lr/lXZIhelbekxU2FnQgDCnJKZqIcKPr7BtLU7xX0+rlQ7Frd+yHkEwVd7ai0ltj57DGrvrqU66qgQyN6Alil8s5BsSQrJ9XOdm2ODHkZwuEQRB5Hj/bQTPEphYLxadlFbw1DFMQNZ4B7yHL8B2crU4MHBBDAXadl+kybfphTG9gP6TqvdfgZEvZHdiGXMBfruEl5q2xydIsC2bokQxfmKEuRBgMQwlzMpzRsumHMScmLumXuKaxr2FIg0DJu8mH24CLs7ycys8kFcAHrqT3EhMKVw+Iw2GIepij+yglKhs0/RD18S3LMmubyXNbKiGq0yicP88N2KShb+aw28Ry++oESwv8OopqE5y3whZyIDI0tE+jfJs7V0Y/WYYCglmapjvecP7TltLYuVtMUsq6VeXGSuZgH2Zq4ucHqoDdTcrCEpBOA2iK//pmKNjz5qboFpH/xpbmNDXWtcvIUBjN6+Ph5gX9W8Znh46X453e+2Z4O7dAHjR7ugbOLe5M1MnStIBMUt8MhXHFkKDM203/1+93rxN1zgCHwHDinaHEf7lZeddYmim/1432d8u+GZKWPrvXMF9vDr2Y9c2xL6FvhmgnbmvN/4OWdqNvhs14CLzlw7EqyW4sTTO958T8xmu7Bk8S2Ty11b4NYjw8+jQ6WCQ+5/ign+DEpl8YXQwNrpY2KKQxbIZUcOWnvoILGUKw5sdA0MsuGeI9cdJZQLGa1qsPhSHtWlFmXqmaOb5mGLjWijbv+PTabsAe7cqqg1YOA2IoaEMskLTxE3wypLmQ4+pqlM5+qDZ6htHGYjgMaQtI2oQGZwmExi8F1wGp3EB8zoBbzsc5P7qwy9Y96gbEEGRJPvdK1802cwvbpa1zyB+7I0OcCSu0wtvWHeqGwxBtfrnCZjS78DVzfHrClaTdLAA6ZSipPlUavBNc69WHwhBEig2RvneKtdEChhviCFnr53V1aaks9miB7aU9cFsqwF9gO6pPS0Nh6yVN3JccYetiiB8mBV3lrW8OhyE/Li5T/kJLgrUUWzWvo3Bq6QLzTksj09yOa6eVxHAYklsWTd081C05jhZitdlYzbSoi6GQauZOsvYl8OEwFMclTL2udFxdO29Xl6VpDorWHcOGw5DLXnkp5RTz5jfF5842nSO+Doy2b+YzHIZ6m8CTGE4Mzz7YaWkoeG90bKIzIIZC7+/chJI+tfRzqwFk2HEBIfTm1x3LvENg+G/PgPG7fz4Xo/coRr6aI1b8k//zzfVcY9X8P8+qj+z0yw1WHW/h8VXfDNHam/Prg+qYi3HWtbr64UP0zZDjpbwfp9AhbbKKYcPQMORplKOYd2fOyM2Gk83FKSljCAytz/Ha4B2xglOcRsLZeHhv8xzZllHCKRl9MwQ94mMTnIk7KTSlZt2ChOIFn+sWvGPEzU68tGPUWumdz67AiQ19M2x8GjBsN1HZMvjMVKB2hdnbcWbbOXsyVOjtVWfO01BGfAmrPf6Wa6NzZBi+mK/H/K9Ov1Rmb+ZetQ/4Q/JpREorpPSkcbjw2t4fyJDDpAE9vXrgDDmKgYLML7QUO+X/jt5NZxQD5R9PSEuHPcc3OBJlIEOC/bl++P6IIUWCi4nem6ft6gNhiKMZpYyItfUZa6M3JfzvgZbyzJC3lR24lgLMXdr1ubi0pQY8PWSIiCeqncRwGFJn8ip/OhMXM2Ac4d8eaCkjmihozXMeEkNks9plwpDnWkrx3uNebvcY2o5o3w5xQAyljkLISxmeP5nkHkMyOAMfDyVvbMze98XqmvG5xfI9hsYx07Tl6r0zFJdzfGpJRyb7XRneQd8MSYY7+xyhbUdmYl9BpU/q+thD4KXCsHeGf6KipPfZUxo7Z4idODP9i0N0tPxf5Pwn9M3wJtYmeH7Y2g//G/pm2GR9nflc4mhLL/0wymu7neSef4J/v5wdk2PeN8OT10YbWxvNsEYy1BUzSkqdZNg9P6QFAWlA6/IhHRsIQx4H/VVTg9XIEFS6Weahbl7n2hP+CZqdiNuu3vt4eFohFfbc3Z2i+g4P46uprWa5XpDqzjZRwfSgoLXGcEAMKTO9pqCbOK2uCeA9o8OtgjsMkVhWP+8HP7fQJZAUyIAzhtKlJfxay7MzEiV1FGPgfimXoIG3A/GZqy8gpCx9EqToZsiFeM5k8P1QAxl+2lJa2ud8mpqfyfVwBtyaIj04hutmwnTshxRKtF37Xm4ig6IYreXag2O4O9UfxjyYlTMw5nteIf5CFGPQtlQjPddSCvTbh3y2CeCeLWVElDQ07GiiRhAaZzWk9CJMslAnDN1lqAKuBG69+qAYHlOEm/rDps2SH1L9KIrRPhwOwWs7ed4nN1pcRIQ1jC7P++SAc0TnyvOGwXje//bsCf79GfA/H8X49yNR4rofXkcTz3Ki/t5ooq8daOO039DJlsrPDYg6M/cEP/24/dlpwxkP+REtQh3XOU8rMzgvPsayO+cWSNCmE4fttXHxElg+XEb18c39g9U1QQ8cDTzVvhvTgBgis2D3YjX7WxwZqsJ7fbQGjKNnsVmo9oWL4TCk1KC0et5dydCeVK+PVkgNSBaThWrW5W6vPhCG2vPidIwLS/M4U4G1M6BV7r9iBrxrqrE/s6DhKbpvaRi8jv83zJ68XfPw4zNL81CGhL8nimEZIK5lGPxrMrzMNgH4+LoM/wKGqcVbW51lsgvYBl9Yx4+qAediUJ63ryeu6JqAntiHTfYl1a81z8DVGbTtM2CQtuA0zGtwAn/fDOX1ngoUqumaAX935zx+KnDfDA2+yZdZr8Yxg/b8MMlQtMjpHjjLpneG1zt/cGlliwzT/zJ7ohr2vhkKuGHYnW3y7cc6GgOQIe196U7Psd/vF+Zkeo2tiW/dHL2P/R7/9s0QsTlMrrG4PXRY3Bz6IubQvqXEH4L4zTvqtoF3zvjxb+kCP5/3u/uufgeGVKD6fOSlITrckd8H8TOPqv7y14MQRlew/vdAil532QX9oPufvD7ZmX4pjhgxYsSIESNGDAP/ByIAH/iJQgRlAAAAAElFTkSuQmCC)

#If either one of the input is "1" or both the inputs are "1", then the output is "1", otherwise the output is "0".

  • XOR Gate

#If both the inputs are same then the output is "0", otherwise the output is "1".

  • NOR gate

![](data://image/png;base64,iVBORw0KGgoAAAANSUhEUgAAAM4AAAD0CAMAAADkIOk9AAAAgVBMVEX////+/v4AAAC3t7fw8PDa2tr7+/vn5+e7u7vW1tZJSUnDw8PIyMhSUlLOzs6oqKiCgoI4ODhwcHBYWFiKiopGRkaRkZF0dHSgoKBdXV319fUiIiJqamrj4+NBQUEcHBwvLy+tra0NDQ0uLi56enqYmJgWFhYfHx8nJyeFhYWOjo6rj81gAAATfUlEQVR4nO1dDZeqLBAGRPz+ykpl1dS0rP//A19QKytS9+6b273HZ88pdzThERiGYUAg/VMAC/5ZwOsH+2LohN1BJxb/Er4684uAJFEIzxVJKP/ESZLgJps0aUFf5hleH8TnwECexr9VlAOgODpChSVRls98hxoEiviHEBIFz5nTSXAQcnhphEgFyQp5fqQfUMVKqkJ6xOChijQXNpWrD4DjvKuKH1PrsIuQz54/LlMZx4eTRoGS7wsVgLJoSk3zovvigddvu5B6/30EEsuPkMG/V7RCIWkyFqII4EhP+AXUKrsqpVWBa+Y5AcYpCNY2rXTkm+yXTlCGLyrkvGA5l7/cHLEMy9k2SdMuV0mRAi1zuW6A+ZfaXqpuIsdNiy2UMstxD56mZhtJBpofhet9LP8ijQsYHROF2KoT9p1LxbohwBpFoQP1UKcctdsWjp1GMitDJBF9IwMSII1mLmPuRxogLtcjvw6mnKqDyhr9loQ784yMplmzEkElq3AFB7KSpl2Q05fNal5Z24DpbppEviIfQgi2KFcUhVXT3+YCeM5p7CUg2etJvMEl0pqcQxIfVOLuDIyxHLHnzoW2FzcKQ1eoFgZxitY0P5hAS4ss27M/9be5NMAbn30GByeNAas/rYYyCp8ovtVoAqejkyOHfSppgN1CL8PTTgJuTdnpkDBASn6TRQcIkh2r/8A4bo5rcEYObybUSDMbaHWrCSqu9gBXdg5XB6jKET/h1Ca0fNKI2UORtF9kcQWEBqv0rAX56OAAc18HVVWVu53ElHGTTyBvWKfUlg6rbIaOchdJjPHGY5ogZvwOvgzwufgMu56eWP1nfHL0ZQDiZNyoqWOVAMKNBAYb6a3yxuudtYpTT8sPXuzrzFbAG1RBGh7TOI4k8gndKCSaSbmBgg2T1SCiGapqaJiXl2w0+pmdaL6Z8jZVw/Qjgm1VVW3NMagmMd6U/WvIn2Hm9EcHL85238qadyxGfdPHpG9Pw08xciaCup6USHr8eSb0H4A9+sTN9lal/GWlMISPGgksWLBgwYIFCxYsWLBgwYJ/Cv/WcPNfHz3/Fj34fzi7IKC4j19zpY/5WSaGAeBtFASrBsHKite5LSeKwlnN67eFVNWGimdiEIASH+LygsjXvd0+jaJTZSQzRxHIKO6l95Ayq0R2MiE7EKh1f14QKmYenoM4ra3QnrXicToAdtP8lxiANiCFH8h1Nenp4ridp7oDlNXS81wVg9l0X0un14jgJcqm0RE2KqfcBQJj74iKgWihv/erZK4qx+lUul1ZkYNhGamBvjIhwD6fXnN9OUZf0aQ5Mlhaj1ECXYEoRpB55XPZvQWcToyiXLV2KtCRlat6bQAF6eycjhQJxTK95I7g16BqHb7SYljbZqlB5iggTmfFIx4kVAELuQQYtaW0dCykaMi9XWt7x69XOH4VX8ISaDgQOaorPBsdtZmPZfnnFS1CWo9OeY1bA8RUjRdQJSM8rl/kt5mpW+/mqHAtHQ00dFjtYqIS2bijg7VGFXDFMKpv4ckbyi/JM90kAL5XxT3Q4SooeKQDiZS/Drdrweem9gNBHExP2lEd4jdr7Ds6Fp94Tja1rCCLRzdcSkfZeebIfVguqeUOnGYXKO6X++YgqQc6vqK4qCLKoTbJtuBtJ+DRNnrwOqdX0FU0orxouC/xuJXQGop/VIoPdKxN6lUYkCqr9YCpAvlQ+BqMHSMan64l23SstyTOVzXV6PkTOpBoClA01mNQDUMdabLG+xlIE01TFJmQRLNxkmq2Px6hQaRaHs4EU47u0Rh98JBiBY811nGQVrM9YXvMvMNpvBHLu/EIKBx7cncncYWCzMiPdmgXqbRvG2Nh7SDKQGfW0Hk8zZt4SIkUjUcGJt6E+DTZ42EGNJETKn5AtELISzOEtvQmxPFadDMcnV+nBNfxM1nWwbLnCWR/PDJQ0d3RGg+h+nUCyilN9bW4m1IPx4o1gNDrxyK2PcdzisgfzdVD+sDM2WOijjGaVRyvRmskaz5VHZbZVlrXAb4barXHNEZbri2ghCIl57HM9jqBDqorTd1q+TZkz9bhYvMsM/G++l4UWS/ieYwOPVmjdhmPGS1RlrPch5moM1OOqdxwU/zCaBrzGUmA0QnlFYrctaebwLuJs3BwNC1Iv22ycNQ8gUBKRxtYMyZMa5tdLXuZb13hO+0Ft/HkFuU+UnjgqNSa+CvEBiHq0U82CINO7IO32U3QSUc0dZu2UWecjubF1faCqrIvdFbdZSFyfF4M1Y1OSABeIVZoPTpvM5qoG03o8oFsed4ZE8XNbNJHez5BEWyVeFs6d3Q45QrlVktH/QNV8A3gKJjABq88O6yjwK/v1fpl8JqxJgUb1kfTeqDDmz37V5+FjqIP9AKXTJOwzgGVVvpKEnaj5IRWCe8gtyhWGjrrGx1mmtCgq2zure28gQtDkk2IWlcP25G7WEgP89DigaZsPAm0tCmGhg6zHKVdpOis1tnpu1WBuRsbRvAo/hh3Tq9XmdDiI+LrgVh3V315bqnzfB/QWQuQF5Spb4Kq9k7BpqFzWGt3nddgYcEJ+vl2cZ4NxhU2i3d8rsuHejE+LjJzJze4zUBNxzE0JwFEdUJGx2EnmBybTmhoeSu2+wSSzfk1H8aGTB94EFd/ncv2qSllbYzd5m4B3eXWzUGrCvqF0axz6Cd579R9vDMzrkaTv4LGA7dqbievds6YD/62HOs6jrv8HyP7Uk8v1fXi6ezTuWb+Ug3aI/5555gazgbA1vZ14TA5sVNPIt9qt/DuuERaT/5ApAWnk9g0sTWFQNnGmq0xw53YvHuXbcLsQI0+/uZFysZxULFh1tnYE2mIQfHo9Eo7uA7dzS6W2Wh0HaXZWQEXPxuz+o7TnLrs4Ufp0AA8KY/ljyKQJ/20pWNpZI1C7itIiIvO9EIHy/3KpjjhAM5FLq5IjdC2svyHUyNTlFJLpyKd6yPkyzsyWbl3G3Z3k+PoFXzfR5a4cBqNFmaRMcccQkvHvnhyWKdAAmSL6PDGrgjBxTjcGa9aeVJZBzeZZYrnyanLFcgDHUIpHWuEihVhYWUgapllrkHf7c5t8eBnk5vRbetyhx0dGGeeZw31Pyyfzt64FzQgOPe/NpWM55yu6tHZQqB++YqCNgQY+45OamBlPdz/KFZ5p88hxVhJ7LN3jNUJfs//De10VUNny+ikkmR5BsCbw9oIdtyp69tYZ2VWDTppiFPnSrcWPpE1zXDc2N8c67Rse63ZVuooVgVCPk1rWxJrO6fID2zegbtW5GwjrAR+ZOtbqUqrobsk1sG/ajnPy46eFbuVYyqzRhX0rIXmoxm0gl49b0w8okdlGcdDPTrOq+raAW1D1Vb6d5gPt5EHN6qs1gsKwd1kPOSVDcfhkKk6VTgjINwInLpMvmEjJDn+jFWR09HYnCK5vk89byvuVj4XL3ObyAz/xHK8BQsWLFiwYMGCBQsWLFiwYMGCBQsWLFiwYMGCBQt+DzCxhTCN74i/i7ftVElPni5C9iUUe7uNUP4tbLKBOfKfAce+KoAUp4ZAbJzrUHT595Bb7ruCq3AsDsXZimPlzcGFsBNBg3npQEBe0vkf9prHC52pt36g04Ukd3R6ibZHPTq3c3dXibN5J52JDoQa7aLtL3RooxCka0TRPR2qGZJkjO8V8nB+LjrUave/uNHBJw+lQZTug5bGjQ7LjlyF53gVRWova8K3oeB7/TFXZVO9tNsD/NZ2mq305VMXntxvOzRqllol+l675o6sL+tkewtESL6+K6GZ6NCq2jl3bQdwOnyJlCGgw840eXbQmhKouNGKkvDguUpiNuFlFEJcRVEC1WwX9BetzERHlZRNEyp9T6ci1PT9x8oG4ArJTVhccrRsLyTGF8IgRK6tpulJ18tE0UuiWUhjz8Ky8cylwyiEGsgPzhOdLy+7xvX3247fxcaR2uOFR9ICs6tzoKDakAO00pDeLpKwm6WIc9MxTqZsFBF5pLPFclhb2gMdwOi0Og336PCXV+BiQ4GcFmbxi3T4DgZputnvJJ7UjY7DVQFx0OmJToDa4FH1ED3SYY8kQkZh/SIdu+Q5NVDcvHqrowMbVQCvOerTcZgqaDYoKCSTsb2nQ/zM/k06xDk3i62i2rzRgS0dQF10fqQDk02zYtn0SsoyTBSvUHhZEqXwFGBmWxmlCokaOjGhM6oCrlWl/d5gidgR4s3kQoeYEfJYV3nZc6mnCliRBXEcl6WD+WLw+HwoJGDusko7HOKVf8K0RNY5ZYoxSQu3b+rNQIfIqsT1rmJLhnKrbCQxVP7GQrvr7O+sAv7CDUmV+dY4iapqfKkhtSWblY4q8XdyYEPS2F0J0VSzbyzMZ4LC7vNPLOpLBlnbuQlFgcHz0OmowOl04P1BtwI1QV6zLgFezj3mfIbK9pDFPyid6+oAx9uneU84Ox1B3n4yfIMjay3fOriOZU2AUheJZSeThJffXzVy2owm7GHzZ1A2B0+EYyEU10UmlH8PaP220vEtxwmdR4SR9yTjcL/OQvm3UG3eVjp4JXZMVZFQ/P84psr30unWYbc6Gjwq6p6PAxjewNYlUzcLmGWA0C5DB4+jUXiXyUHNBqduaDvLeKfLEhB0oxPpsNtNWTUzS7/DLCzJJk+lg5nNpl1NlWE6WI2mvPLx/XQgwG4WRWl475jib4XdR3EnBmN0tAAJt/F6TPP9Rg6UDiGk8aEZYN7owHwXEhp/XRYtDtIhxEDjG8/MUDp82JYyFawWZbM3181tGPE3wTJxl/6IkaN+Cp1kx30eykG/owOSA+9/lN3F5B9RBR9SOnzLD74jCN1593Tki7i7/G+hI7+mw9TE30WHuzJrn/LK5j9Uti8uxjvreULkGR9EB/OXB7M2v72f38FBI77uGvWX0IHQ3LmYrupuF6ELHWAcmTjea/AvKh0OGtYRGxU8zr7RqhV3lw/3O7KLsglvt5zFyKE2N3Ie6PA9rRpxd9EwHYXdwqAfQefqjAHiudEWYybo3ffLNJeZ66m3Xuj8OM030lmdhPJKTMf+f3wF76MTpee1AHomEp/jYyC6+ls4u977XB+RtxIh/QpEYv8QCS//DoK4fqMnp6Sid1KsLZGYqp498CKLiUji99ER+6j/XlXQ2Wz34HRu/12vaP1sP8Sc01XPjikeSqSMGznw3rAYTHMmx5SqPTumWEnJZ/+y+dfg/A5hJps54S0Vc9DBLjedwyenLgRKjg4Xb+BQ6cB8b8VpOb550PtdH5BIh4rgeGc/e0EpyXZT6Mj7lQJCFI5u1jaDJwfHjWMK3TumOkyhA2DF308ibzajdsMMlS3Z8S28lZ3+SIcnO6l0SFSwkRuM0agqn6F0WpfNkyenxX5K6ZC0aWErNLpp6ox00j+nszlwLfAZdFrHFN75f04nLvieo/Hh1ytb01OLHFMtIG87Y54cCJ12R9ho9H1Cc4RJmDuX0tVXk9snzXYc70ZZ/5RaMlPUL/bd7af5djqs2VRZFHtP8zv8EgOhstvDfUhRQyO1gnTCpsfzOKbMPBfMvrETspRLHYthm02TcmPCbOKcQfvtR98E7X9NckyNpjnPzPV1Jv6hG70OE0bpwEmbt757vNPLkSCuoA/j04dvseDW7fBNhI+n8yKIZfvWIJY3OqasXBQGFHkice7W25+HGIVvDDGKakuE7OCLxGmxEV7+LehT3sn2h3TilSyA5uqJSO5kqkj8PdjRXxU8OYbZViYK+p17fLyf7R+bQbijg2VyXzrTZ9+g8FCc5jx0iO0+rH2D3C0VhvwdyaPjHfZ7Iwwl5TP8bPxYOhYPdIASeGXpbckonWYBUHzS4w8ZIPAArvSBDiDOLodktbu80WGIjvZVYuAU1eh7ROdqO890sL9hY2WjuKwnGvIVnAuDL7scN4N+j06C+Nt5mwCwkQECJH7BvQTxB3hyOjzTubrfJtBpf/wJjqkOg3QaDNHZfD4dpbZ4XNju0qkO+tk4ERLvft3Pds3REx1a8qhWqagm+NlyVLHi5O/kG0tzPjrd61quRo65DxQcXUkMKWpsbWxYFdKndKNKXqCIr2jvGTnE2W/0VJoQMQWhrXuWd/6A6aoWRLHNZp+FuwAw2TYTMu6Y4k6cxDa1Fy+Dvktzsain3nqh8+M051+Z+CJi6v8ZXL/RMRVHhgir1BSJq70jvPxbkKw3OqaOlmhbq/1BKPaK9OdbZr3VMRXbpgDBRiS2qywXXv4tqP7cEVN/rWNK5KN+5XKHDZ0fZ2QuzQbB81K+3vpLMFo6vz+/c1fZ6KNjCnSGzkQ6118MpzmbY2pDBXOjdmlNCADrHFOfMzeKpR162mMKAkVCkyKmSFXH7uZzHFP0efjGQeCkiCmg1dwxhT7ZMdU2hClBLBBuUeOYSj/YMdViEp3WMQU/2jHVYnoA2GdETF1z9JPS+QscUw3gfkrEFImLj3dMtZhEp92NSk7jXw8Au+AVnUmxoBDrGxtUSPr9SN3uWDqg+N4x1XWj6PLC9EGrwNbTKF1/jmMqMQ3zzjHFjyFlYuN5X1ABZNOwP8cxBW8Hf+T6+Kg1CD38Y56cf4zOXzy4jgNFgORkYZFc8kyR+HuQ48HX0f+ITlToGwF2SCjOkCeUfwspOr2LDtFUSbzjukDciKQX10+G1O6i+BY6b3pKH5zwgjfgP0gpvuW9nQ85AAAAAElFTkSuQmCC)

#It inverse the output of OR gate. If both the inputs are "0", the output is "1" otherwise the output is "0".

  • NAND gate

#It inverse the output of AND gate. If both the inputs are "1", the output is "0", otherwise the output is "1".

Quantum Gates

A quantum gate is basic building block of quantum circuit like the logic gate. In case of a quantum gate it is reversible, whereas conventional logic gates are not. Reversible means that if the measurements are not according to a circuit, a reversal of the quantum circuit will undo the operation. A quantum gate is represented by a unitary matrix.

The vector representation of a single qubit is:

The vectors v0 and v1 determine the probability of measuring a 0 or a 1, when measuring the state of the qubit.

The value zero is represented by

The value one is represented by

The combined state of two qubits is the tensor product of the two qubits. The tensor product is denoted by the symbol .

The vector representation of two qubits is:

The action of the gate on a specific quantum state is found by multiplying the vector  which represents the state, by the matrix  representing the gate. The result is a new quantum state .

Reference

  1. https://www.tutorialspoint.com/computer_logical_organization/logic_gates.htm
  2. https://www.youtube.com/watch?v=wLv20RHqlgw
  3. https://en.wikipedia.org/wiki/Quantum_logic_gate

© 2025, blueqat Inc. All rights reserved