Two-Step QAOA: Enhancing Quantum Optimization by Decomposing One-Hot Constraints in QUBO Formulations
Yuichiro Minato
The Quantum Approximate Optimization Algorithm (QAOA) has shown promise in solving combinatorial optimization problems by leveraging quantum computational power. We propose a simple approach, the Two-Step QAOA, which aims to improve the effectiveness of QAOA by decomposing problems with one-hot encoding QUBO (Quadratic Unconstrained Binary Optimization) formulations. By identifying and separating the problem into two stages, we transform soft constraints into hard constraints, simplifying the generation of initial conditions and enabling more efficient optimization. The method is particularly beneficial for tackling complex societal problems that often involve intricate constraint structures.