common.title

Docs
Quantum Circuit
TYTAN CLOUD

QUANTUM GAMING


Overview
Contact
Event
Project
Research

Terms of service (Web service)

Terms of service (Quantum and ML Cloud service)

Privacy policy


Sign in
Sign up
common.title

Torch Tytan on QUBO Annealing Benchmark / H100, RTX6000ada, T4

Yuichiro Minato

2024/02/25 15:06

Today, I conducted benchmarks for Torch Tytan, focusing on moderate computations with 5,000 and 10,000 qubits, and compared them across different GPUs to avoid too much variety.

今日はTorch Tytanのベンチマークをとってみました。あんまり種類があるとアレなので、5,000と10,000量子ビットの適度な計算をGPU別にとりました。

from tytan import *
import random
import time

N = 5000

qubits

q = symbols_list(N, 'q{}')

hamiltonian

H = 0

biases

for i in range(N):
H += random.randint(-10, 10) * q[i]

Jij but set N as it takes a long time to finish if we set all of connections

for i in range(N):
H += random.choice([-1, 1]) * q[random.randint(0,N-1)] * q[random.randint(0,N-1)]

compile

qubo, offset = Compile(H).get_qubo()

sampler

solver = sampler.ArminSampler(seed=None, mode='GPU', device='cuda:0', verbose=1)

start = time.time()

#sampling
result = solver.run(qubo, shots=1)

print(time.time() - start)

In this way, for 5,000 qubits, we set a moderate 5,000 points of interaction, and for 10,000 qubits, we set a moderate 10,000 points of interaction. All measurements were taken on a single GPU.

こんな感じで、5,000量子ビットでは適度に5,000箇所の相互作用を、10,000量子ビットでは、適度に1万箇所の相互作用を決めます。全てシングルGPUで計測しています。

5,000qubits

H100 : 3.7187023162841797s
RTX 6000ada : 3.443608045578003s
T4 : 14.257462501525879s

10,000qubits

H100 : 12.083187103271484s
RTX 6000ada : 11.568817615509033s
T4 : 62.8189423084259s

It went quite well. The H100 might achieve even higher speeds, but that's for another time.

なかなかいい感じでした。H100はもっと速度出るかもしれませんが一旦。

© 2025, blueqat Inc. All rights reserved