common.title

Docs
Quantum Circuit
TYTAN CLOUD

QUANTUM GAMING


Overview
Contact
Event
Project
Research

Terms of service (Web service)

Terms of service (Quantum and ML Cloud service)

Privacy policy


Sign in
Sign up
common.title

Tensornetwork+Kerasを実行してみる

Yuichiro Minato

2021/01/14 05:55

テンソルとテンソルネットワーク

テンソルは線形的な量を一般化したもので、基底を選べば多次元の配列として表現できるようなもの。そして、テンソルネットワークは大きなテンソルをより小さなテンソルに分解してネットワーク化したものです。

記法

足の数によって記法が変わります。*をノード、-をエッジとして見たときに、

・足が一つはベクトルになります。

---*
v_j = \begin{bmatrix} v_1\\ v_2\\ \vdots\\ v_n \end{bmatrix}

・足が2つは行列になります。

---*---
M_{ij} = \begin{bmatrix} M_{11} & \cdots & M_{1n}\\ \vdots\\ M_{m1} & \cdots & M_{mn} \end{bmatrix}

・足が3つはオーダー3のテンソルになります。

---*---
   |
T_{ijk} = \begin{bmatrix} T_{111} & \cdots & T_{1n1}\\ \vdots\\ T_{m11} & \cdots & T_{mn1} \end{bmatrix} , \begin{bmatrix} T_{112} & \cdots & T_{1n2}\\ \vdots\\ T_{m12} & \cdots & T_{mn2} \end{bmatrix}, \cdots

縮約

ノード同士はエッジで接続され、それぞれ計算されます。

・ベクトルと行列
ベクトルと行列は縮約するとベクトルになります。

--*--* = ----*
v'_i = \sum_jM_{ij}v_j

・行列同士
行列同士は行列になります。足の数も変わりません。

--*--*-- = --*--
M_{ik} = A_{ij}B_{jk}

具体的にTensornetwork

イメージ湧かないので、Googleから提供されているオープンソースソフトウェアを使ってみます。インストールはpip経由で、

!pip install tensornetwork
Collecting tensornetwork
  Downloading tensornetwork-0.4.4-py3-none-any.whl (360 kB)
     |████████████████████████████████| 360 kB 5.6 MB/s eta 0:00:01
[?25hCollecting graphviz>=0.11.1
  Downloading graphviz-0.16-py2.py3-none-any.whl (19 kB)
Requirement already satisfied: opt-einsum>=2.3.0 in /opt/conda/lib/python3.8/site-packages (from tensornetwork) (3.3.0)
Requirement already satisfied: numpy>=1.17 in /opt/conda/lib/python3.8/site-packages (from tensornetwork) (1.19.1)
Requirement already satisfied: scipy>=1.1 in /opt/conda/lib/python3.8/site-packages (from tensornetwork) (1.4.1)
Requirement already satisfied: h5py>=2.9.0 in /opt/conda/lib/python3.8/site-packages (from tensornetwork) (2.10.0)
Requirement already satisfied: six in /opt/conda/lib/python3.8/site-packages (from h5py>=2.9.0->tensornetwork) (1.15.0)
Installing collected packages: graphviz, tensornetwork
Successfully installed graphviz-0.16 tensornetwork-0.4.4

となります。

基本の形

基本はテンソルネットワークの形を決めてそれぞれをつなぎます。参考は下記になります。

import numpy as np
import tensornetwork as tn

a = tn.Node(np.ones((10,))) 
b = tn.Node(np.ones((10,)))
edge = a[0] ^ b[0]
final_node = tn.contract(edge)
print(final_node.tensor)
10.0

少しずつ見てみる

まず読み込みます

import numpy as np
import tensornetwork as tn

次にノードを指定します。今回はAとBというベクトルを指定します。

a = tn.Node(np.ones((10,))) 
b = tn.Node(np.ones((10,)))

aとbにエッジを指定します。

edge = a[0] ^ b[0]

そして、これらのテンソル縮約をとって表示をして見ます。

final_node = tn.contract(edge)
print(final_node.tensor)
10.0

今回は、AとB共に下記のような10この要素が全て1のベクトルなので、

\begin{bmatrix} 1\\1\\\vdots\\1 \end{bmatrix}

計算結果は、
1∗1+1∗1+...+1∗1=10
と、スカラー量となります。

ベクトルと行列

aのベクトルとbの行列の縮約を取ると、

a = tn.Node(np.ones((5))) 
b = tn.Node(np.ones((5,5)))
edge = a[0] ^ b[0]
final_node = tn.contract(edge)
print(final_node.tensor)
[5. 5. 5. 5. 5.]

これはベクトルになります。

\begin{bmatrix} 1&1&1&1&1\\ 1&1&1&1&1\\ 1&1&1&1&1\\ 1&1&1&1&1\\ 1&1&1&1&1 \end{bmatrix} \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 5\\5\\5\\5\\5 \end{bmatrix}

Speeding up neural networks using TensorNetwork in Keras
Kerasと組み合わせてできるそうです。やってみたい。例題動かすだけで申し訳ないですが、
https://blog.tensorflow.org/2020/02/speeding-up-neural-networks-using-tensornetwork-in-keras.html

基本的には計算の重たい行列部分を分解します。

#ツールを読み込みます。今回はtensorflow2.0を利用
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import tensornetwork as tn

#デフォルトのバックエンドをnumpyからtensorflowに変更
tn.set_default_backend("tensorflow")
class TNLayer(tf.keras.layers.Layer):

  def __init__(self):
    super(TNLayer, self).__init__()
    # 各層の変数を決めます。
    self.a_var = tf.Variable(tf.random.normal(
            shape=(32, 32, 2), stddev=1.0/32.0),
             name="a", trainable=True)
    self.b_var = tf.Variable(tf.random.normal(shape=(32, 32, 2), stddev=1.0/32.0),
                             name="b", trainable=True)
    self.bias = tf.Variable(tf.zeros(shape=(32, 32)), name="bias", trainable=True)

  def call(self, inputs):
    # 縮約を定義し、並列計算を可能にする
    def f(input_vec, a_var, b_var, bias_var):
      # ベクトルの代わりに行列に
      input_vec = tf.reshape(input_vec, (32,32))

      # ネットワークを決める
      a = tn.Node(a_var)
      b = tn.Node(b_var)
      x_node = tn.Node(input_vec)
      a[1] ^ x_node[0]
      b[1] ^ x_node[1]
      a[2] ^ b[2]

      # 行列をaとbに分解
      #   |     |
      #   a --- b
      #    \   /
      #      x

      # 縮約実行
      c = a @ x_node
      result = (c @ b).tensor

      # バイアスを付加
      return result + bias_var

    # バッチ処理に tf.vectorized_map を利用する
    result = tf.vectorized_map(
        lambda vec: f(vec, self.a_var, self.b_var, self.bias), inputs)
    return tf.nn.relu(tf.reshape(result, (-1, 1024)))

テンソル分解前のモデルは、

Dense = tf.keras.layers.Dense
fc_model = tf.keras.Sequential(
    [
     tf.keras.Input(shape=(2,)),
     Dense(1024, activation=tf.nn.relu),
     Dense(1024, activation=tf.nn.relu),
     Dense(1, activation=None)])
fc_model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense (Dense)                (None, 1024)              3072      
_________________________________________________________________
dense_1 (Dense)              (None, 1024)              1049600   
_________________________________________________________________
dense_2 (Dense)              (None, 1)                 1025      
=================================================================
Total params: 1,053,697
Trainable params: 1,053,697
Non-trainable params: 0
_________________________________________________________________

パラメータ数は100万あります。これをテンソルネットワークレイヤーに置き換えると、

tn_model = tf.keras.Sequential(
    [
     tf.keras.Input(shape=(2,)),
     Dense(1024, activation=tf.nn.relu),
     # MPSで書き換えた結果
     TNLayer(),
     Dense(1, activation=None)])
tn_model.summary()
Model: "sequential_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_3 (Dense)              (None, 1024)              3072      
_________________________________________________________________
tn_layer (TNLayer)           (None, 1024)              5120      
_________________________________________________________________
dense_4 (Dense)              (None, 1)                 1025      
=================================================================
Total params: 9,217
Trainable params: 9,217
Non-trainable params: 0
_________________________________________________________________

9200程度に削減できました。

訓練

訓練させてみます

X = np.concatenate([np.random.randn(20, 2) + np.array([3, 3]), 
             np.random.randn(20, 2) + np.array([-3, -3]), 
             np.random.randn(20, 2) + np.array([-3, 3]), 
             np.random.randn(20, 2) + np.array([3, -3]),])

Y = np.concatenate([np.ones((40)), -np.ones((40))])

tn_model.compile(optimizer="adam", loss="mean_squared_error")
tn_model.fit(X, Y, epochs=300, verbose=1)
Epoch 1/300
/opt/conda/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:433: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
  warnings.warn(
3/3 [==============================] - 0s 3ms/step - loss: 0.9859
Epoch 2/300
3/3 [==============================] - 0s 2ms/step - loss: 0.9265
Epoch 3/300
3/3 [==============================] - 0s 2ms/step - loss: 0.8774
Epoch 4/300
3/3 [==============================] - 0s 2ms/step - loss: 0.8236
Epoch 5/300
3/3 [==============================] - 0s 2ms/step - loss: 0.7597
Epoch 6/300
3/3 [==============================] - 0s 2ms/step - loss: 0.6845
Epoch 7/300
3/3 [==============================] - 0s 2ms/step - loss: 0.5953
Epoch 8/300
3/3 [==============================] - 0s 2ms/step - loss: 0.4913
Epoch 9/300
3/3 [==============================] - 0s 2ms/step - loss: 0.3775
Epoch 10/300
3/3 [==============================] - 0s 2ms/step - loss: 0.2623
Epoch 11/300
3/3 [==============================] - 0s 2ms/step - loss: 0.1584
Epoch 12/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0909
Epoch 13/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0708
Epoch 14/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0801
Epoch 15/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0953
Epoch 16/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0830
Epoch 17/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0624
Epoch 18/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0531
Epoch 19/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0549
Epoch 20/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0563
Epoch 21/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0540
Epoch 22/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0498
Epoch 23/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0463
Epoch 24/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0456
Epoch 25/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0448
Epoch 26/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0438
Epoch 27/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0418
Epoch 28/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0400
Epoch 29/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0389
Epoch 30/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0383
Epoch 31/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0372
Epoch 32/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0362
Epoch 33/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0349
Epoch 34/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0340
Epoch 35/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0333
Epoch 36/300
3/3 [==============================] - ETA: 0s - loss: 0.024 - 0s 3ms/step - loss: 0.0323
Epoch 37/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0311
Epoch 38/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0307
Epoch 39/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0302
Epoch 40/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0290
Epoch 41/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0285
Epoch 42/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0271
Epoch 43/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0265
Epoch 44/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0256
Epoch 45/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0244
Epoch 46/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0239
Epoch 47/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0234
Epoch 48/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0221
Epoch 49/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0212
Epoch 50/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0204
Epoch 51/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0198
Epoch 52/300
3/3 [==============================] - 0s 6ms/step - loss: 0.0191
Epoch 53/300
3/3 [==============================] - 0s 4ms/step - loss: 0.0179
Epoch 54/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0173
Epoch 55/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0166
Epoch 56/300
3/3 [==============================] - 0s 4ms/step - loss: 0.0157
Epoch 57/300
3/3 [==============================] - 0s 4ms/step - loss: 0.0148
Epoch 58/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0142
Epoch 59/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0136
Epoch 60/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0131
Epoch 61/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0119
Epoch 62/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0115
Epoch 63/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0106
Epoch 64/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0101
Epoch 65/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0096
Epoch 66/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0091
Epoch 67/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0084
Epoch 68/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0079
Epoch 69/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0073
Epoch 70/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0068
Epoch 71/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0062
Epoch 72/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0059
Epoch 73/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0054
Epoch 74/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0049
Epoch 75/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0045
Epoch 76/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0042
Epoch 77/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0038
Epoch 78/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0035
Epoch 79/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0033
Epoch 80/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0030
Epoch 81/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0027
Epoch 82/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0024
Epoch 83/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0022
Epoch 84/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0021
Epoch 85/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0019
Epoch 86/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0017
Epoch 87/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0016
Epoch 88/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0014
Epoch 89/300
3/3 [==============================] - 0s 3ms/step - loss: 0.0013
Epoch 90/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0012
Epoch 91/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0011
Epoch 92/300
3/3 [==============================] - 0s 2ms/step - loss: 0.0010
Epoch 93/300
3/3 [==============================] - 0s 2ms/step - loss: 8.7574e-04
Epoch 94/300
3/3 [==============================] - 0s 3ms/step - loss: 8.8600e-04
Epoch 95/300
3/3 [==============================] - 0s 3ms/step - loss: 7.5164e-04
Epoch 96/300
3/3 [==============================] - 0s 3ms/step - loss: 7.5406e-04
Epoch 97/300
3/3 [==============================] - 0s 2ms/step - loss: 6.7849e-04
Epoch 98/300
3/3 [==============================] - 0s 2ms/step - loss: 6.8074e-04
Epoch 99/300
3/3 [==============================] - 0s 3ms/step - loss: 5.6292e-04
Epoch 100/300
3/3 [==============================] - 0s 2ms/step - loss: 6.1036e-04
Epoch 101/300
3/3 [==============================] - 0s 2ms/step - loss: 5.1326e-04
Epoch 102/300
3/3 [==============================] - 0s 2ms/step - loss: 4.6571e-04
Epoch 103/300
3/3 [==============================] - 0s 3ms/step - loss: 4.5498e-04
Epoch 104/300
3/3 [==============================] - 0s 3ms/step - loss: 4.0282e-04
Epoch 105/300
3/3 [==============================] - 0s 2ms/step - loss: 3.8238e-04
Epoch 106/300
3/3 [==============================] - 0s 3ms/step - loss: 3.8329e-04
Epoch 107/300
3/3 [==============================] - 0s 2ms/step - loss: 3.2295e-04
Epoch 108/300
3/3 [==============================] - 0s 3ms/step - loss: 3.4945e-04
Epoch 109/300
3/3 [==============================] - 0s 3ms/step - loss: 3.0512e-04
Epoch 110/300
3/3 [==============================] - 0s 3ms/step - loss: 2.8472e-04
Epoch 111/300
3/3 [==============================] - 0s 3ms/step - loss: 2.5208e-04
Epoch 112/300
3/3 [==============================] - 0s 2ms/step - loss: 2.5966e-04
Epoch 113/300
3/3 [==============================] - 0s 2ms/step - loss: 2.4697e-04
Epoch 114/300
3/3 [==============================] - 0s 2ms/step - loss: 2.2523e-04
Epoch 115/300
3/3 [==============================] - 0s 3ms/step - loss: 2.1603e-04
Epoch 116/300
3/3 [==============================] - 0s 3ms/step - loss: 1.9578e-04
Epoch 117/300
3/3 [==============================] - 0s 3ms/step - loss: 1.9062e-04
Epoch 118/300
3/3 [==============================] - 0s 2ms/step - loss: 1.6892e-04
Epoch 119/300
3/3 [==============================] - 0s 3ms/step - loss: 1.6410e-04
Epoch 120/300
3/3 [==============================] - 0s 2ms/step - loss: 1.5607e-04
Epoch 121/300
3/3 [==============================] - 0s 3ms/step - loss: 1.4121e-04
Epoch 122/300
3/3 [==============================] - 0s 3ms/step - loss: 1.3879e-04
Epoch 123/300
3/3 [==============================] - 0s 5ms/step - loss: 1.2620e-04
Epoch 124/300
3/3 [==============================] - 0s 3ms/step - loss: 1.3199e-04
Epoch 125/300
3/3 [==============================] - 0s 2ms/step - loss: 1.1584e-04
Epoch 126/300
3/3 [==============================] - 0s 2ms/step - loss: 1.1183e-04
Epoch 127/300
3/3 [==============================] - 0s 2ms/step - loss: 1.0627e-04
Epoch 128/300
3/3 [==============================] - 0s 2ms/step - loss: 1.0516e-04
Epoch 129/300
3/3 [==============================] - 0s 2ms/step - loss: 9.6686e-05
Epoch 130/300
3/3 [==============================] - 0s 3ms/step - loss: 8.9551e-05
Epoch 131/300
3/3 [==============================] - 0s 2ms/step - loss: 9.5922e-05
Epoch 132/300
3/3 [==============================] - 0s 3ms/step - loss: 8.5369e-05
Epoch 133/300
3/3 [==============================] - 0s 3ms/step - loss: 8.1285e-05
Epoch 134/300
3/3 [==============================] - 0s 2ms/step - loss: 8.5368e-05
Epoch 135/300
3/3 [==============================] - 0s 2ms/step - loss: 7.1356e-05
Epoch 136/300
3/3 [==============================] - 0s 2ms/step - loss: 7.5935e-05
Epoch 137/300
3/3 [==============================] - 0s 2ms/step - loss: 7.6523e-05
Epoch 138/300
3/3 [==============================] - 0s 2ms/step - loss: 6.6843e-05
Epoch 139/300
3/3 [==============================] - 0s 2ms/step - loss: 5.9801e-05
Epoch 140/300
3/3 [==============================] - 0s 3ms/step - loss: 6.3317e-05
Epoch 141/300
3/3 [==============================] - 0s 2ms/step - loss: 6.0042e-05
Epoch 142/300
3/3 [==============================] - 0s 3ms/step - loss: 6.0035e-05
Epoch 143/300
3/3 [==============================] - 0s 3ms/step - loss: 5.4436e-05
Epoch 144/300
3/3 [==============================] - 0s 2ms/step - loss: 5.4438e-05
Epoch 145/300
3/3 [==============================] - 0s 2ms/step - loss: 5.4067e-05
Epoch 146/300
3/3 [==============================] - 0s 2ms/step - loss: 4.9671e-05
Epoch 147/300
3/3 [==============================] - 0s 3ms/step - loss: 4.8846e-05
Epoch 148/300
3/3 [==============================] - 0s 2ms/step - loss: 5.0365e-05
Epoch 149/300
3/3 [==============================] - 0s 3ms/step - loss: 4.3061e-05
Epoch 150/300
3/3 [==============================] - 0s 2ms/step - loss: 4.2068e-05
Epoch 151/300
3/3 [==============================] - 0s 2ms/step - loss: 4.0363e-05
Epoch 152/300
3/3 [==============================] - 0s 2ms/step - loss: 3.6734e-05
Epoch 153/300
3/3 [==============================] - 0s 3ms/step - loss: 3.6385e-05
Epoch 154/300
3/3 [==============================] - 0s 2ms/step - loss: 3.4057e-05
Epoch 155/300
3/3 [==============================] - 0s 2ms/step - loss: 3.5116e-05
Epoch 156/300
3/3 [==============================] - 0s 3ms/step - loss: 3.0130e-05
Epoch 157/300
3/3 [==============================] - 0s 2ms/step - loss: 3.6015e-05
Epoch 158/300
3/3 [==============================] - 0s 2ms/step - loss: 3.4962e-05
Epoch 159/300
3/3 [==============================] - 0s 3ms/step - loss: 3.1835e-05
Epoch 160/300
3/3 [==============================] - 0s 3ms/step - loss: 2.7964e-05
Epoch 161/300
3/3 [==============================] - 0s 3ms/step - loss: 4.0337e-05
Epoch 162/300
3/3 [==============================] - 0s 2ms/step - loss: 3.7837e-05
Epoch 163/300
3/3 [==============================] - 0s 2ms/step - loss: 2.3564e-05
Epoch 164/300
3/3 [==============================] - 0s 2ms/step - loss: 3.6233e-05
Epoch 165/300
3/3 [==============================] - 0s 2ms/step - loss: 3.6375e-05
Epoch 166/300
3/3 [==============================] - 0s 2ms/step - loss: 3.1726e-05
Epoch 167/300
3/3 [==============================] - 0s 2ms/step - loss: 2.5174e-05
Epoch 168/300
3/3 [==============================] - 0s 2ms/step - loss: 2.8795e-05
Epoch 169/300
3/3 [==============================] - 0s 2ms/step - loss: 3.1214e-05
Epoch 170/300
3/3 [==============================] - 0s 2ms/step - loss: 2.6692e-05
Epoch 171/300
3/3 [==============================] - 0s 2ms/step - loss: 2.2342e-05
Epoch 172/300
3/3 [==============================] - 0s 2ms/step - loss: 2.1864e-05
Epoch 173/300
3/3 [==============================] - 0s 2ms/step - loss: 2.1456e-05
Epoch 174/300
3/3 [==============================] - 0s 2ms/step - loss: 1.8572e-05
Epoch 175/300
3/3 [==============================] - 0s 2ms/step - loss: 2.0431e-05
Epoch 176/300
3/3 [==============================] - 0s 2ms/step - loss: 1.9673e-05
Epoch 177/300
3/3 [==============================] - 0s 2ms/step - loss: 1.7745e-05
Epoch 178/300
3/3 [==============================] - 0s 3ms/step - loss: 1.9004e-05
Epoch 179/300
3/3 [==============================] - 0s 2ms/step - loss: 2.0076e-05
Epoch 180/300
3/3 [==============================] - 0s 2ms/step - loss: 2.0832e-05
Epoch 181/300
3/3 [==============================] - 0s 2ms/step - loss: 1.5797e-05
Epoch 182/300
3/3 [==============================] - 0s 2ms/step - loss: 1.6723e-05
Epoch 183/300
3/3 [==============================] - 0s 3ms/step - loss: 1.6544e-05
Epoch 184/300
3/3 [==============================] - 0s 3ms/step - loss: 1.6024e-05
Epoch 185/300
3/3 [==============================] - 0s 2ms/step - loss: 1.3748e-05
Epoch 186/300
3/3 [==============================] - 0s 2ms/step - loss: 1.4181e-05
Epoch 187/300
3/3 [==============================] - 0s 2ms/step - loss: 1.2579e-05
Epoch 188/300
3/3 [==============================] - 0s 2ms/step - loss: 1.2580e-05
Epoch 189/300
3/3 [==============================] - 0s 3ms/step - loss: 1.2533e-05
Epoch 190/300
3/3 [==============================] - 0s 2ms/step - loss: 1.2917e-05
Epoch 191/300
3/3 [==============================] - 0s 3ms/step - loss: 1.1905e-05
Epoch 192/300
3/3 [==============================] - 0s 3ms/step - loss: 1.0851e-05
Epoch 193/300
3/3 [==============================] - 0s 2ms/step - loss: 1.3414e-05
Epoch 194/300
3/3 [==============================] - 0s 3ms/step - loss: 1.4885e-05
Epoch 195/300
3/3 [==============================] - 0s 2ms/step - loss: 1.2855e-05
Epoch 196/300
3/3 [==============================] - 0s 2ms/step - loss: 1.0836e-05
Epoch 197/300
3/3 [==============================] - 0s 3ms/step - loss: 1.0261e-05
Epoch 198/300
3/3 [==============================] - 0s 3ms/step - loss: 9.8217e-06
Epoch 199/300
3/3 [==============================] - 0s 4ms/step - loss: 1.0741e-05
Epoch 200/300
3/3 [==============================] - 0s 3ms/step - loss: 8.6370e-06
Epoch 201/300
3/3 [==============================] - 0s 3ms/step - loss: 9.6454e-06
Epoch 202/300
3/3 [==============================] - 0s 3ms/step - loss: 9.9669e-06
Epoch 203/300
3/3 [==============================] - 0s 3ms/step - loss: 1.1830e-05
Epoch 204/300
3/3 [==============================] - 0s 3ms/step - loss: 8.8200e-06
Epoch 205/300
3/3 [==============================] - 0s 5ms/step - loss: 1.3088e-05
Epoch 206/300
3/3 [==============================] - 0s 3ms/step - loss: 9.4599e-06
Epoch 207/300
3/3 [==============================] - 0s 4ms/step - loss: 1.0797e-05
Epoch 208/300
3/3 [==============================] - 0s 3ms/step - loss: 1.2839e-05
Epoch 209/300
3/3 [==============================] - 0s 6ms/step - loss: 1.0324e-05
Epoch 210/300
3/3 [==============================] - 0s 5ms/step - loss: 8.9375e-06
Epoch 211/300
3/3 [==============================] - 0s 5ms/step - loss: 9.4638e-06
Epoch 212/300
3/3 [==============================] - 0s 4ms/step - loss: 9.5824e-06
Epoch 213/300
3/3 [==============================] - 0s 3ms/step - loss: 9.6420e-06
Epoch 214/300
3/3 [==============================] - 0s 4ms/step - loss: 8.1607e-06
Epoch 215/300
3/3 [==============================] - 0s 3ms/step - loss: 8.3069e-06
Epoch 216/300
3/3 [==============================] - 0s 3ms/step - loss: 8.0919e-06
Epoch 217/300
3/3 [==============================] - 0s 2ms/step - loss: 7.0897e-06
Epoch 218/300
3/3 [==============================] - 0s 2ms/step - loss: 7.2336e-06
Epoch 219/300
3/3 [==============================] - 0s 3ms/step - loss: 6.2919e-06
Epoch 220/300
3/3 [==============================] - 0s 2ms/step - loss: 7.2332e-06
Epoch 221/300
3/3 [==============================] - 0s 2ms/step - loss: 8.6723e-06
Epoch 222/300
3/3 [==============================] - 0s 5ms/step - loss: 6.2510e-06
Epoch 223/300
3/3 [==============================] - 0s 4ms/step - loss: 5.9212e-06
Epoch 224/300
3/3 [==============================] - 0s 3ms/step - loss: 6.6930e-06
Epoch 225/300
3/3 [==============================] - 0s 2ms/step - loss: 6.4057e-06
Epoch 226/300
3/3 [==============================] - 0s 2ms/step - loss: 5.7821e-06
Epoch 227/300
3/3 [==============================] - 0s 2ms/step - loss: 5.8294e-06
Epoch 228/300
3/3 [==============================] - 0s 2ms/step - loss: 5.5520e-06
Epoch 229/300
3/3 [==============================] - 0s 2ms/step - loss: 4.9410e-06
Epoch 230/300
3/3 [==============================] - 0s 2ms/step - loss: 5.4561e-06
Epoch 231/300
3/3 [==============================] - 0s 2ms/step - loss: 4.8599e-06
Epoch 232/300
3/3 [==============================] - 0s 2ms/step - loss: 4.3782e-06
Epoch 233/300
3/3 [==============================] - 0s 2ms/step - loss: 4.4193e-06
Epoch 234/300
3/3 [==============================] - 0s 2ms/step - loss: 4.6412e-06
Epoch 235/300
3/3 [==============================] - 0s 2ms/step - loss: 5.4934e-06
Epoch 236/300
3/3 [==============================] - 0s 2ms/step - loss: 5.0386e-06
Epoch 237/300
3/3 [==============================] - 0s 2ms/step - loss: 4.1739e-06
Epoch 238/300
3/3 [==============================] - 0s 2ms/step - loss: 4.9338e-06
Epoch 239/300
3/3 [==============================] - 0s 2ms/step - loss: 4.2226e-06
Epoch 240/300
3/3 [==============================] - 0s 2ms/step - loss: 4.1354e-06
Epoch 241/300
3/3 [==============================] - 0s 2ms/step - loss: 3.7327e-06
Epoch 242/300
3/3 [==============================] - 0s 3ms/step - loss: 4.5763e-06
Epoch 243/300
3/3 [==============================] - 0s 3ms/step - loss: 5.9205e-06
Epoch 244/300
3/3 [==============================] - 0s 2ms/step - loss: 4.4189e-06
Epoch 245/300
3/3 [==============================] - 0s 3ms/step - loss: 4.2926e-06
Epoch 246/300
3/3 [==============================] - 0s 2ms/step - loss: 3.6680e-06
Epoch 247/300
3/3 [==============================] - 0s 2ms/step - loss: 3.6443e-06
Epoch 248/300
3/3 [==============================] - 0s 2ms/step - loss: 3.5317e-06
Epoch 249/300
3/3 [==============================] - 0s 2ms/step - loss: 3.8150e-06
Epoch 250/300
3/3 [==============================] - 0s 2ms/step - loss: 3.5815e-06
Epoch 251/300
3/3 [==============================] - 0s 3ms/step - loss: 3.5809e-06
Epoch 252/300
3/3 [==============================] - 0s 2ms/step - loss: 4.2071e-06
Epoch 253/300
3/3 [==============================] - 0s 2ms/step - loss: 4.2209e-06
Epoch 254/300
3/3 [==============================] - 0s 2ms/step - loss: 4.4257e-06
Epoch 255/300
3/3 [==============================] - 0s 2ms/step - loss: 3.9730e-06
Epoch 256/300
3/3 [==============================] - 0s 2ms/step - loss: 5.6366e-06
Epoch 257/300
3/3 [==============================] - 0s 3ms/step - loss: 4.4209e-06
Epoch 258/300
3/3 [==============================] - 0s 2ms/step - loss: 3.9057e-06
Epoch 259/300
3/3 [==============================] - 0s 2ms/step - loss: 3.0130e-06
Epoch 260/300
3/3 [==============================] - 0s 3ms/step - loss: 3.0427e-06
Epoch 261/300
3/3 [==============================] - 0s 3ms/step - loss: 3.1672e-06
Epoch 262/300
3/3 [==============================] - 0s 3ms/step - loss: 3.1241e-06
Epoch 263/300
3/3 [==============================] - 0s 6ms/step - loss: 3.0838e-06
Epoch 264/300
3/3 [==============================] - 0s 3ms/step - loss: 2.8876e-06
Epoch 265/300
3/3 [==============================] - 0s 3ms/step - loss: 2.6803e-06
Epoch 266/300
3/3 [==============================] - 0s 2ms/step - loss: 2.6007e-06
Epoch 267/300
3/3 [==============================] - 0s 2ms/step - loss: 2.9473e-06
Epoch 268/300
3/3 [==============================] - 0s 2ms/step - loss: 3.0610e-06
Epoch 269/300
3/3 [==============================] - 0s 3ms/step - loss: 2.7810e-06
Epoch 270/300
3/3 [==============================] - 0s 3ms/step - loss: 2.5782e-06
Epoch 271/300
3/3 [==============================] - 0s 3ms/step - loss: 2.8270e-06
Epoch 272/300
3/3 [==============================] - 0s 2ms/step - loss: 2.5069e-06
Epoch 273/300
3/3 [==============================] - 0s 3ms/step - loss: 2.7066e-06
Epoch 274/300
3/3 [==============================] - 0s 3ms/step - loss: 2.4883e-06
Epoch 275/300
3/3 [==============================] - 0s 3ms/step - loss: 2.2770e-06
Epoch 276/300
3/3 [==============================] - 0s 3ms/step - loss: 2.2133e-06
Epoch 277/300
3/3 [==============================] - 0s 2ms/step - loss: 2.3347e-06
Epoch 278/300
3/3 [==============================] - 0s 2ms/step - loss: 2.2566e-06
Epoch 279/300
3/3 [==============================] - 0s 3ms/step - loss: 2.0183e-06
Epoch 280/300
3/3 [==============================] - 0s 2ms/step - loss: 2.3372e-06
Epoch 281/300
3/3 [==============================] - 0s 2ms/step - loss: 2.1137e-06
Epoch 282/300
3/3 [==============================] - 0s 2ms/step - loss: 2.1159e-06
Epoch 283/300
3/3 [==============================] - 0s 3ms/step - loss: 2.0542e-06
Epoch 284/300
3/3 [==============================] - 0s 2ms/step - loss: 1.9478e-06
Epoch 285/300
3/3 [==============================] - 0s 2ms/step - loss: 1.9790e-06
Epoch 286/300
3/3 [==============================] - 0s 3ms/step - loss: 2.0434e-06
Epoch 287/300
3/3 [==============================] - 0s 3ms/step - loss: 2.0363e-06
Epoch 288/300
3/3 [==============================] - 0s 3ms/step - loss: 1.9720e-06
Epoch 289/300
3/3 [==============================] - 0s 3ms/step - loss: 2.0978e-06
Epoch 290/300
3/3 [==============================] - 0s 2ms/step - loss: 1.9812e-06
Epoch 291/300
3/3 [==============================] - 0s 2ms/step - loss: 1.9890e-06
Epoch 292/300
3/3 [==============================] - 0s 2ms/step - loss: 1.9947e-06
Epoch 293/300
3/3 [==============================] - 0s 3ms/step - loss: 1.7500e-06
Epoch 294/300
3/3 [==============================] - 0s 2ms/step - loss: 1.9563e-06
Epoch 295/300
3/3 [==============================] - 0s 3ms/step - loss: 1.6496e-06
Epoch 296/300
3/3 [==============================] - 0s 2ms/step - loss: 2.1377e-06
Epoch 297/300
3/3 [==============================] - 0s 3ms/step - loss: 2.3962e-06
Epoch 298/300
3/3 [==============================] - 0s 3ms/step - loss: 1.5973e-06
Epoch 299/300
3/3 [==============================] - 0s 2ms/step - loss: 2.2113e-06
Epoch 300/300
3/3 [==============================] - 0s 2ms/step - loss: 2.3474e-06
<tensorflow.python.keras.callbacks.History at 0x7f42ac72c1f0>

イメージをプロットさせてみます

# Plotting code, feel free to ignore.
h = 1.0
x_min, x_max = X[:, 0].min() - 5, X[:, 0].max() + 5
y_min, y_max = X[:, 1].min() - 5, X[:, 1].max() + 5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                     np.arange(y_min, y_max, h))

# here "model" is your model's prediction (classification) function
Z = tn_model.predict(np.c_[xx.ravel(), yy.ravel()]) 

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z)
plt.axis('off')

# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired)
<matplotlib.collections.PathCollection at 0x7f4297ea3220>
<Figure size 432x288 with 1 Axes>

image

© 2025, blueqat Inc. All rights reserved